Laboratory Testing for Her2 Status in Breast Cancer

Katherine Geiersbach, M.D.

Assistant Professor, Department of Pathology

May 28, 2015

Overview

 Clinical relevance of Her2 status for treatment of breast cancer

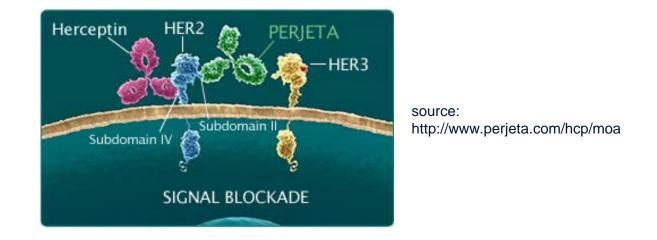
• Standard approaches for determining Her2 status in breast cancer

Current concepts and controversies in Her2 testing

Who gets breast cancer?

- Breast cancer is one of the most common malignancies to affect women
- About 1 in 8 women will be diagnosed with breast cancer at some point in her lifetime
- Most cases of breast cancer are sporadic, but a small percentage (5-10%) are related to a heritable gene mutation, most commonly *BRCA1* or *BRCA2*
- Having a first degree relative with breast cancer increases a woman's chance of developing breast cancer
- Screening mammography is recommended for older women
 - US Preventive Services Task Force: Every 2 years starting at age 50
 - American Cancer Society, others: Every 2 years starting at age 40

How is breast cancer treated?


- Surgery: excision with or without sentinel lymph node biopsy
 - Breast conserving: lumpectomy, partial mastectomy
 - Mastectomy
- Chemotherapy: before and/or after surgery
- Radiation
- Targeted therapies
 - Hormone therapy: Tamoxifen, aromatase inhibitors
 - Her2 targeted therapy for cancers with overexpression of the gene ERBB2, commonly called Her2 or Her2/neu
- Treatment is based on testing for ER, PR, and Her2 status, as well as cancer grade and stage.

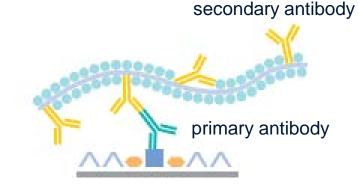
Her2 targeted therapy

- Herceptin (trastuzumab)
- Others: pertuzumab (Perjeta), T-DM1 (Kadcyla), and lapatinib (Tykerb)
- Recent data shows that a combination of pertuzumab, trastuzumab, and docetaxel (PTD) improved progression free survival compared to patients who had only trastuzumab and docetaxel (TD)^{1,2}

- 1. CLEOPATRA trial. Most recent: Swain et al, *NEJM* 2015 Feb 19;372(8):724-34.
- 2. NeoSphere trial. Gianni et al, *Lancet Oncol* 2012 Jan;13(1):25-32.

ER, PR, and Her2

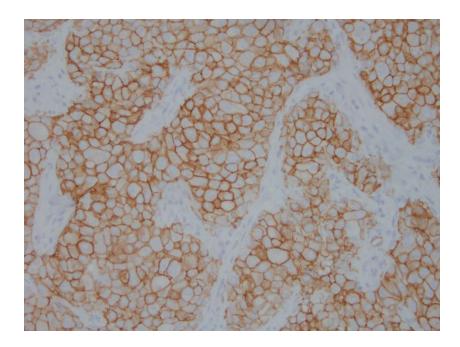
- Proteins made by some breast cancers
- ER and PR: Hormone receptors
 - ER: estrogen receptor
 - PR (PgR): progesterone receptor
 - Tested by immunohistochemistry; immunoreactivity in 1% or more cancer cells is considered positive¹
- Her2: Growth factor receptor
 - Encoded by gene *ERBB2*, also known as Her2/neu, V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog, *etc*.
 - Tested by immunohistochemistry and/or *in situ* hybridization


¹Hammond MEH, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/ College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. *Arch Pathol Lab Med.* 2010;134:907–922.

Methods for assessing Her2 status in breast cancer: Immunohistochemistry

- Antibody directed to Her2 protein, detected with a secondary antibody conjugated to a substrate (horseradish peroxidase)
- Chromogen (DAB) is used to generate stain where Her2 protein binds primary + secondary antibody

Her2 protein


Adapted from HercepTest[™] Interpretation Manual (Dako)

Methods for assessing Her2 status in breast cancer: Immunohistochemistry

- Staining intensity is correlated to the number of Her2 protein molecules per cell
- Scored according to the intensity and completeness of staining of the cell membrane, where Her2 protein resides
 - Negative (0 or 1+)
 - Equivocal (2+)
 - Positive (3+)

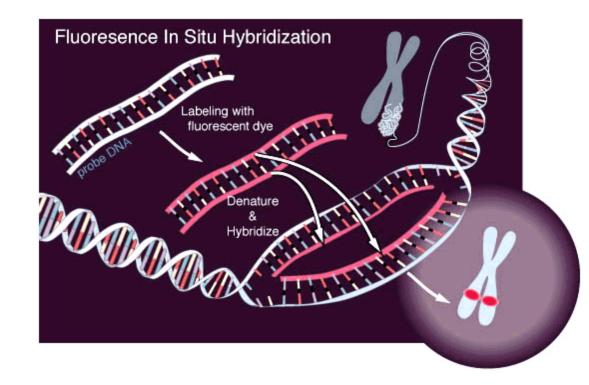
Her2 positive 3+ staining intensity HercepTest (Dako)

ARPLABORATORIES

Pros and Cons of Her2 Immunohistochemistry

• Pros

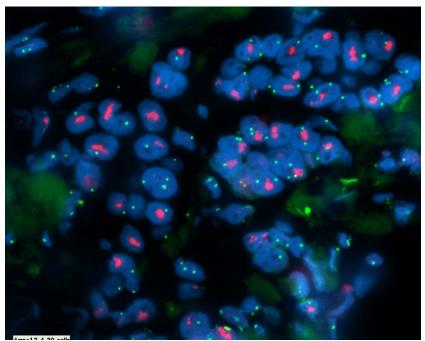
- Inexpensive
- Detects Her2 overexpression regardless of mechanism
- Can visualize with brightfield microscopy under low power, allowing rapid assessment of entire tissue sample tested


- Cons
 - False negatives will be undetected due to lack of internal control
 - Subjective, semi-quantitative interpretation

Methods for assessing Her2 status in breast cancer: *In situ* hybridization

- FISH: fluorescent labeled probe
- Brightfield in situ hybridization is similar but uses nonfluorescent labeling to allow visualization by brightfield microscopy

source: http://en.wikipedia.org/wiki/Fluorescence_in_situ_hybridization



Methods for assessing Her2 status in breast cancer: *In situ* hybridization (FISH)

- FISH slide is scored by enumerating signals for the target (Her2) and the control (CEP17) (chromosome 17 centromere)
- Her2/CEP17 ratio and average Her2 signal count per cell are both used to determine Her2 status
 - Amplified
 - Non-amplified
 - Equivocal

ARPLABORATORIES

- Indeterminate

Her2 positive Her2/CEN-17 ratio ≥2 HER2 IQFISH pharmDx[™]

Pros and Cons of Her2 FISH

• Pros

- Less subjective than immunohistochemistry; an absolute quantitative score is generated
- Her2 amplification by FISH correlates well with overexpression by IHC in breast cancer
- Direct genetic evaluation of individual tumor cells *in situ* on a slide, allows for evaluation of cell to cell variability, sub-clonal populations

- Cons
 - More expensive than immunohistochemistry
 - More time consuming interpretation
 - Analytic difficulties related to control locus, which can also be abnormal in cancer

ASCO CAP Guidelines (2007)

- Standardization of immunohistochemistry and FISH assays
- Specified tissue handling and formalin fixation times
- Mandated external proficiency testing
- Defined 3 categories of results:

Method	Negative	Equivocal	Positive
IHC	No staining or weak, complete membrane staining <10%	Weak, non-uniform staining ≥10% or Uniform intense membrane staining ≤30%	Uniform intense membrane staining >30%
FISH	Single probe: <4/cell	Single probe: 4-5.9/cell	Single probe: ≥6.0/cell
	Dual probe: Ratio < 1.8	Dual probe: Ratio 1.8-2.2	Dual probe: Ratio >2.2

ASCO CAP Updated Guidelines (2013)

Re-defined 3 categories of results:

Method	Negative	Equivocal	Positive
IHC	No staining or faint, barely perceptible staining	Incomplete and/or weak to moderate membrane staining >10%, or uniform intense membrane staining ≤10%	Uniform intense membrane staining >10%
FISH	Single probe: <4/cell Dual probe: <4/cell, and ratio <2.0	Single probe: 4-5.9/cell Dual probe: 4-5.9/cell, and ratio <2.0	Single probe: ≥6.0/cell Dual probe: Ratio ≥2.0 or ≥6.0/cell

Created new category: Indeterminate (technical issues preventing interpretation of test)

What Changed in the 2013 Guidelines?

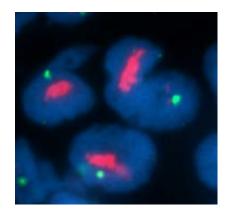
- Negative:
 - Immunohistochemistry: Re-defined 0 and 1+
 - FISH: Ratio <2.0 <u>and</u> <4 average Her2 copies per cell (was ratio <1.8)
- Equivocal:
 - Immunohistochemistry: **≤10% intense membrane staining** (was <30%)
 - FISH: 4 to 5.9 average Her2 copies per cell (was ratio 1.8-2.2)
- Positive:
 - Immunohistochemistry: >10% intense membrane staining (was ≥30%)
 - FISH: Ratio ≥2.0 <u>or</u> ≥6 average Her2 copies per cell (was ratio >2.2)

Additional Changes in the 2013 Guidelines

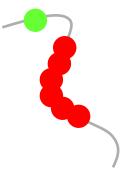
- Included guidance on new technologies
 - Brightfield in situ hybridization: guidelines same as FISH
 - DNA microarray and mRNA expression assays: insufficient evidence to support clinical use for Her2 status
- Resolved discordance between different existing methodologies
 - Single vs. dual probe FISH assays
- Minimized false negatives by lowering thresholds for equivocal and amplified/positive
- Broadened recommendations: Her2 testing on all primary and recurrent/metastatic breast cancers
- Promoted early testing of all breast cancers (diagnostic biopsy instead of excision)
- Provided route for resolving discrepancies between Her2 testing and histology
- Updated definition of genetic heterogeneity

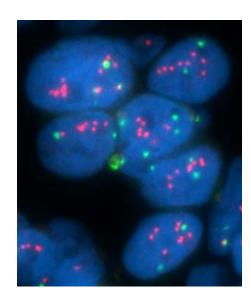
Clinical Impact of Changed Guidelines

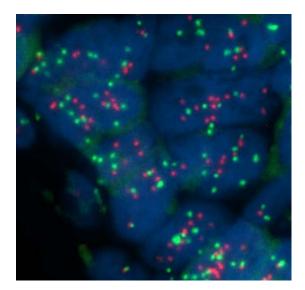
HER2 Amplification Status of IHC Equivocal (2+) Cases by Percent Membrane Staining

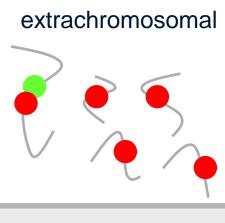

IHC 2+	FISH Amplified (2013 Guidelines) (%)	
2+ Cases (All)	58/707 (8.2%)	
2+ Cases, 10-30% Membrane Staining	38/507 (7.5%)	
Strong	1/8 (12.5%)	
Moderate	17/136 (12.5%)	
Weak	20/363 (5.5%)	

Poster presentation at San Antonio Breast Cancer Symposium, December 2014 Gulbahce et al, Effect of the New 2013 ASCO / CAP Guidelines on HER2 Reporting.

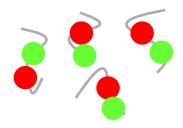


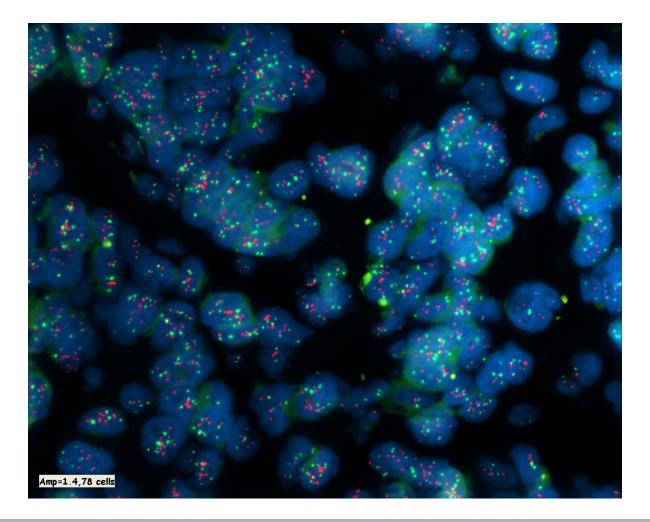


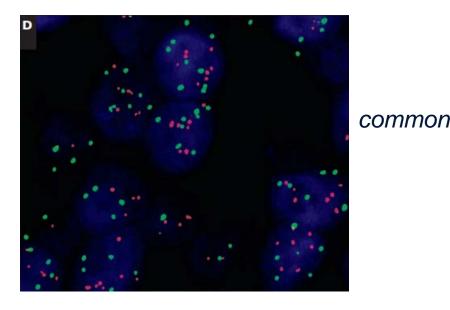

Patterns of Her2 amplification



intrachromosomal ("stacked" signals)




co-amplification


Challenges in Her2 FISH Testing 1. Polysomy / Co-amplification

Chromosome 17 "polysomy" in Her2 FISH testing

- Extra copies of chromosome 17 centromere
- 3 or more copies of CEP17 (avg/cell): ~8% of cases, mostly those with 4-6 Her2 copies per cell (equivocal range)¹

rare

Colocalization ("Coamplification")²

- 1. Wolff AC et al. ASCO/CAP guideline for Her2 testing (2007)
- 2. Starczynski et al. Am J Clin Pathol. 137, 595-605 (2012)

What is "polysomy"?

- Extra whole copies of a chromosome
- Normal diploid state is 2 copies
- 3 or more copies is polysomy
- Polysomy is harder to define on FFPE sections due to signal truncation
 - Average signal count for diploid state is < 2 in FFPE
 - Polysomy has been defined in the medical literature as average signal counts as low as 1.86¹ and ranging up to >3
 - − Most commonly adopted threshold is mean of ≥3 CEP17 signals per nucleus²

- 1. Watters et al. Breast cancer research and treatment. 2003 77(2):109-14, 2003.
- 2. Hanna et al. Modern Pathology 27:4-18, 2014.

Does chromosome 17 "polysomy" affect Her2 expression?

• Most cases <u>not</u> associated with Her2 protein or mRNA overexpression^{1,2}

TABLE 2. Breakdown of CEP17 Polysomy by IHC, Mean HER2 Copy Number, Mean CEP17 Copy Number,Mean HER2/CEP17 Ratio, and ISH for HER2 mRNA

IHC	CEP17 +	Mean HER2 Copy	Mean CEP17	Mean HER2/CEP17 Ratio	ISH for HER2 mRNA
0-1+	39/56 (69%)	4.2	3.1	1.4	16/16 without HER2 gene overexpression
2+	15/56 (27%)	4.6	3.0	1.5	9/9 without HER2 gene overexpression
3+	2/56 (3%)	4.5	3.1	1.5	1/1 without <i>HER2</i> gene overexpression

 Absolute Her2 signal number per cell of 6.0 or greater is correlated with overexpression of Her2, regardless of the Her2/CEP17 ratio²

- 1. Downs-Kelly et al, AJSP 2005 Sep;29(9):1221-7. (data shown above: Table 2)
- 2. Dal Lago et al. Molecular cancer therapeutics. 2006 Oct;5(10):2572-9.

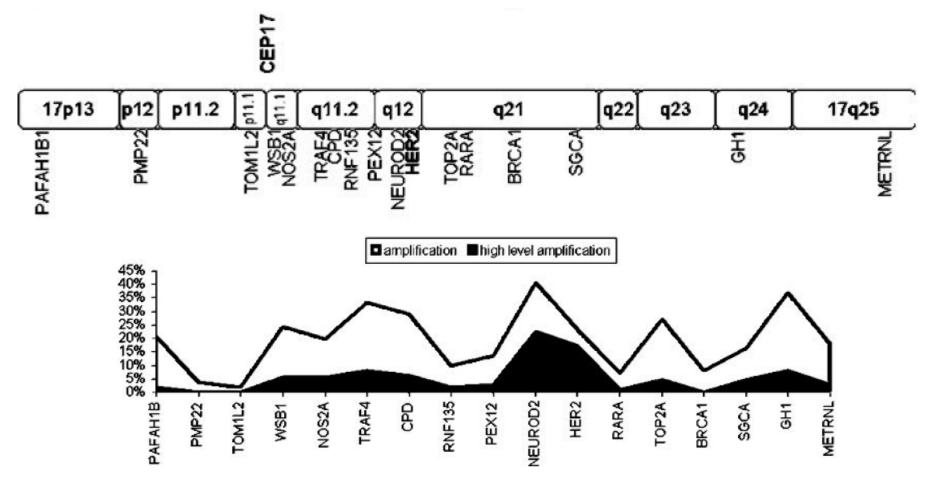
Where are the extra copies of chromosome 17 centromere?

- In extra whole copies of chromosome 17 ("true polysomy")
- In extra structurally abnormal (deleted, duplicated, rearranged) DNA molecules:
 - Extra structurally abnormal copies of chr17 (centromere 17 present)

or

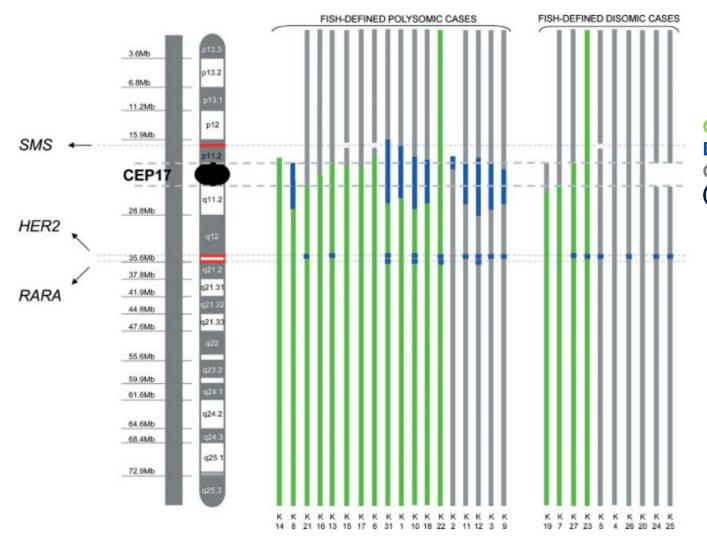
- Separate "marker" (structurally abnormal, unidentifiable) chromosomes
- Co-amplification: discrete segments of the genome are amplified together, often in tandem on the same chromosome or on separate "marker" (structurally abnormal, unidentifiable) chromosomes

FISH with SMS/RARA probes to resolve Her2 status



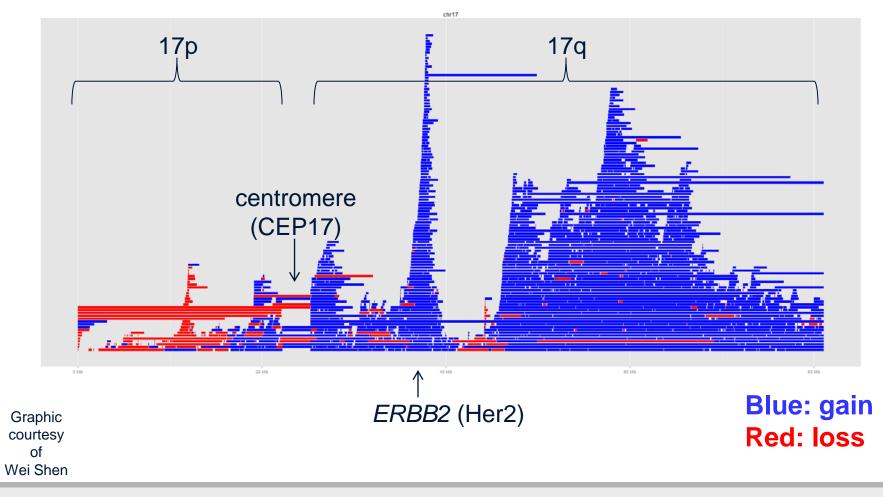
Troxell ML et al. Am J Clin Pathol. 126: 709-16, 2006

Multiplex ligation-dependent probe amplification (MLPA) – chromosome 17



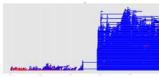
Moelans, C. B., et al. Breast Cancer Res Treat. 120: 1-7, 2010

Microarray CGH: chromosome 17


Green: gain Blue: amplification Gray: no change (White): deletion

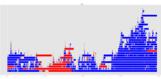
Marchio et al, J Pathol. 219: 16-24, 2009

TCGA: DNA copy number on 773 breast tumors (SNP microarray) Nature 490: 61-70, 2012

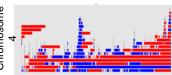


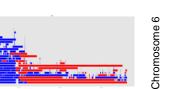
Chromosome 5

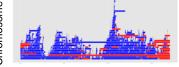
Chromosome 9

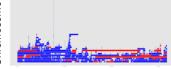

Chromosome

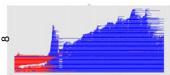
3

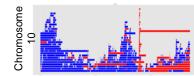


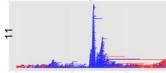


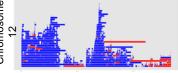

Chromosome 3

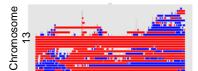

Chromosome

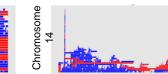



Chromosome 7

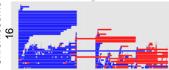

Chromosome ω

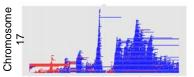


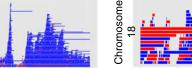


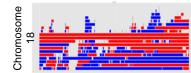

Chromosome 11

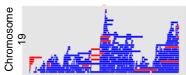
Chromosome 12

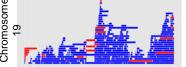


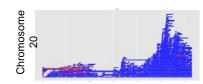











Chromosome 22

Chromosome

Graphic courtesy of Wei Shen & Lisa Collins

Copy number gains in the context of the cancer genome

- Entire genome may be present in 3 or more copies (on average), i.e. "polyploidy," confounding the definition of "normal" or "control" for the genome
 - Polyploidy may not be detected on microarray analysis, depending on the software tools and bioinformatic approach used for analysis
- Adult solid tumors are known to have complex genomes, characterized by gains, losses, allelic imbalances encompassing large portions of the genome
- Absolute copy number per cell can be estimated by some techniques, but not others
 - FISH, flow cytometry, cytogenetics: individual cell analysis
- Reference/ "control" region(s) may also be abnormal

(The Search for a Perfect Control)

- CEP17 is co-amplified in a fraction of cases
- Another gene region on chromosome 17 may be used as a control

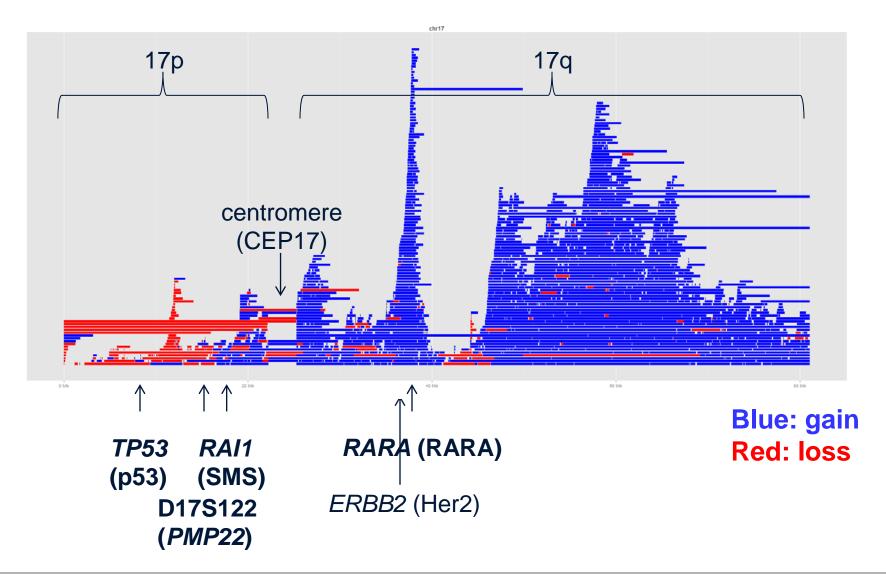
But....

- No region of the genome is immune to copy number changes in cancer
- Chromosome 17 is especially prone to copy number changes in breast cancer

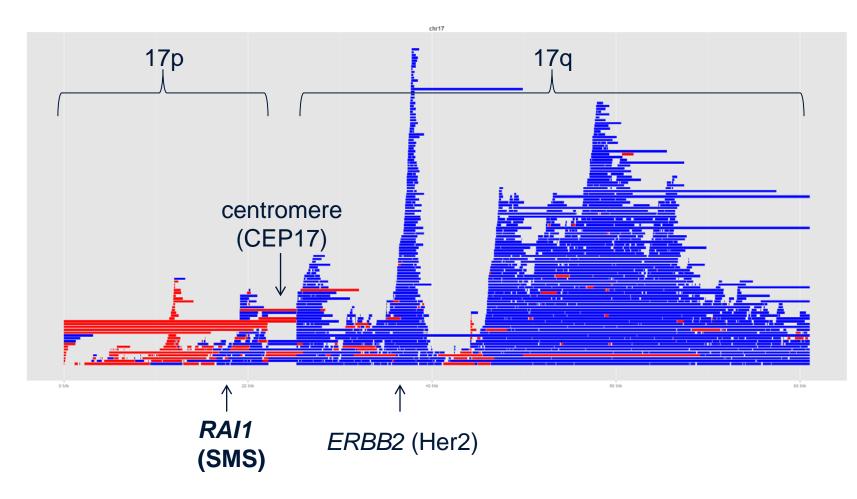
Resolution of Equivocal Her2 FISH

- ASCO-CAP 2013 Guidelines recommend using an alternate control probe for a gene on chromosome 17
- What if the alternate control probe is also abnormal (deleted or amplified)?
 - No guidelines on interpretation or further reflex testing

Cut-off values for alternate control probe


Study	Probe(s) used	Cutoff: Deleted	Cutoff: Amplified
Troxell (2006)	SMS (<i>RAI1</i>), RARA	none	Not specified
Tse (2011)	SMS (<i>RAI1</i>), RARA, TP53	none, highest of 3 probes <2.6 used as new control to calculate Her2 ratio	≥2.6
Mansfield (2013)	D17S122 (<i>PMP22</i>)	none	Not specified*

* CEP17 ≥6.0 was defined as co-amplification of chromosome 17 centromere


Alternate control probes used to resolve Her2 double equivocals

Reflex FISH Testing for Double Equivocals

12/773 (1.6%) in TCGA study copy number alterations at RAI1

Challenges in Her2 FISH Testing

2. Genetic Heterogeneity

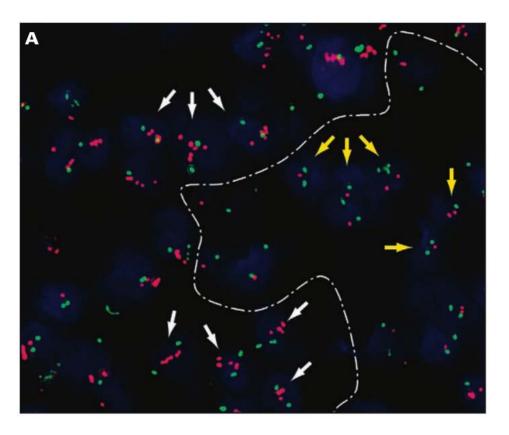
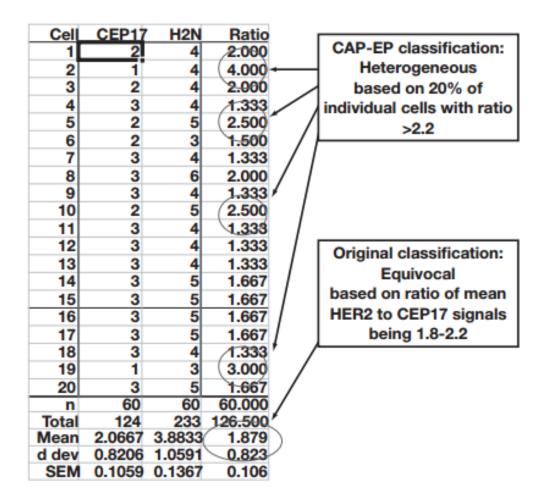
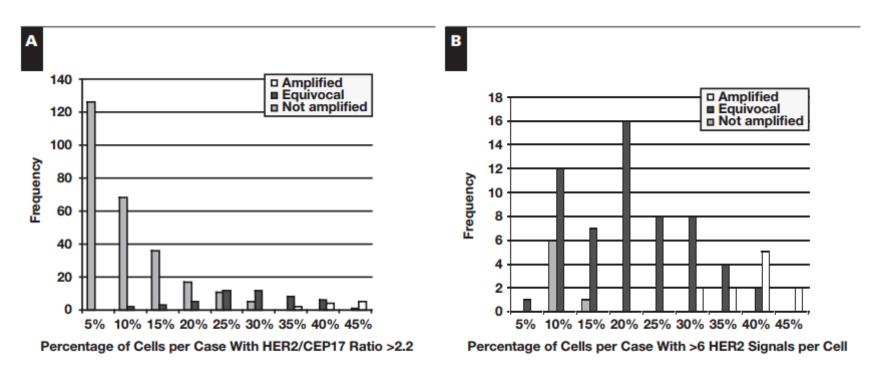


Fig. 1A from Starczynski et al. HER2 gene amplification in breast cancer: a rogues' gallery of challenging diagnostic cases: UKNEQAS interpretation guidelines and research recommendations. *Am J Clin Pathol.* 137, 595-605, 2012.


Genetic Heterogeneity

- A subpopulation of tumor cells shows amplification, while the rest of the tumor is nonamplified
- 2009 guideline: More than 5% but less than 50% infiltrating tumor cells with a ratio higher than 2.2
 - Must report % amplified, pattern (scattered or discrete population) and whether cells are histologically distinctive
 - Problems with spurious "amplified" cells defined only by ratio of individual cells (e.g. 1 green and 3 red signals)
- 2013 update: More than 10% infiltrating tumor cells with increased Her2 signals/cell
 - Only reported if there is a discrete subpopulation of amplified cells, and score the amplified and non-amplified cell populations separately

1. Vance, G. H., et al., 2009. Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch Pathol Lab Med. 133, 611-2.



Allison et al. Frequency of HER2 heterogeneity by fluorescence in situ hybridization according to CAP expert panel recommendations: time for a new look at how to report heterogeneity. *Am J Clin Pathol.* 136, 864-71, 2011.

Figure 31 Standard College of American Pathologists/American Society of Clinical Oncology classification by HER2/centromere 17 (CEP17) ratio (**A**) and number of signals per cell (**B**).

Allison et al. Frequency of HER2 heterogeneity by fluorescence in situ hybridization according to CAP expert panel recommendations: time for a new look at how to report heterogeneity. *Am J Clin Pathol.* 136, 864-71, 2011.

Summary

- Immunohistochemistry and in situ hybridization (ISH, FISH) are the recommended methods for determining Her2 status for treatment with Her2-targeted therapy
- Neither method is 100% sensitive or specific
- Updated ASCO-CAP (2013) guidelines have resulted in increased proportion of patients being eligible for Her2-targeted therapy
- Her2-positive cases are not a homogeneous group
 - Borderline positive cases may not be as responsive to Her2-targeted therapy
- Challenges in Her2 laboratory testing include polysomy / co-amplification, and genetic heterogeneity

Department of Pathology

© 2014 ARUP Laboratories